Тренажер «таблица умножения за 20 минут»

Содержание

Выполнение умножения

При практическом решении задачи умножения двух чисел необходимо свести её к последовательности более простых операций: «простое умножение», сложение, сравнение и др. Для этого разработаны различные методы умножения, например для чисел, дробей, векторов и др. На множестве натуральных чисел в настоящее время используется алгоритм поразрядного умножения. При этом следует рассматривать умножение как процедуру (в отличие от операции).


Примерный алгоритм процедуры поразрядного умножения двух чисел

Процедура достаточно сложная, состоит из относительно большого числа шагов и при умножении больших чисел может занять продолжительное время.

Пример пошагового умножения 3 ∙ 3 = 9 на числовой прямой.

«Простое умножение» в данном контексте обозначает операцию умножения одноразрядных чисел, которая может быть легко сведена к сложению. Является гипероператором сложения:

a⋅b=hyper2⁡(a,b)=hyper⁡(a,2,b)=a(2)b.{\displaystyle a\cdot b=\operatorname {hyper2} (a,b)=\operatorname {hyper} (a,2,b)=a^{(2)}b.}

a(2)b=a⋅b=a+a+⋯+a⏟b.{\displaystyle a{^{(2)}}b=a\cdot b=\underbrace {a+a+\dots +a} _{b}.}

где a+a+⋯+a{\displaystyle a+a+\dots +a} — последовательное сложение b{\displaystyle b} элементов.

Чтобы упростить и ускорить процесс умножения используют табличный метод «простого умножения», для этого заранее вычисляют все комбинации произведений чисел от 0 до 9 и берут готовый результат из этой таблицы:

Таблица для умножения в десятичной системе счисления

* 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9
2 2 4 6 8 10 12 14 16 18
3 3 6 9 12 15 18 21 24 27
4 4 8 12 16 20 24 28 32 36
5 5 10 15 20 25 30 35 40 45
6 6 12 18 24 30 36 42 48 54
7 7 14 21 28 35 42 49 56 63
8 8 16 24 32 40 48 56 64 72
9 9 18 27 36 45 54 63 72 81

Данная процедура применима к умножению натуральных и целых (с учётом знака) чисел. Для других чисел используются более сложные алгоритмы.

Умножение физических величин

См. также: Единицы физических величин

Единица измерения физической величины имеет определенное наименование (размерность), например, для длины — метр (м), для времени — секунда (с), для массы — грамм (г) и так далее. Результат измерения той или иной величины представляет собой не просто число, а число с размерностью, например, 10 м, 145 с, 500 г. Размерность представляет собой самостоятельный объект, который равноправно участвует в операции умножения. При умножении физических величин умножаются как сами числовые значения, так и их размерности, порождая новое число с новой размерностью. Например, прямоугольник со сторонами 5 м и 3 м обладает площадью, получаемой умножением длин сторон:

5 м · 3 м = 5 · 3 м·м= 15 м·м, или 15 м².

Таким образом, умножение физических величин надо рассматривать как нахождение новой физической величины, отличающейся от величин, которые мы умножаем. Если физически возможно создание такого произведения, например, при нахождении работы, скорости или других величин, то эта величина образует множество, отличное от начальных. В этом случае композиции этих величин  присваивается новое обозначение (новый термин), например: плотность, ускорение, мощность и прочее.

Например, если умножить скорость равномерно и прямолинейно движущегося тела, равную 5 м/с, на время, равное 3 с, то получится именованное число (физическая величина), которая называется «длина», или «расстояние» и измеряется в метрах:

5 м/с · 3 с = 15 (м/с) · с = 15 м.

Помимо размерных физических величин существуют безразмерные величины. Безразмерные величины либо просто определяют некоторое количество (измеряются «штуками», «разами» и тому подобное), либо являются отношениями физических величин одной и той же размерности, например, относительная плотность является отношением плотности тела к эталонной плотности (обычно, плотности воды). При умножении величины с размерностью на безразмерную величину результат сохраняет исходную размерность. Например, если взять 5-метровые рейки в количестве 3 штуки, то в результате умножения получим общую длину реек 15 метров:

5 м · 3 = 15 м.

Количество реек (безразмерная величина) здесь не зависит ни от способа их подсчёта, ни от единицы измерения их длины. Например, если измерить длину не в метрах, а в футах, то длина той же рейки составит 16,4 фута, а общая длина трёх реек:

16,4 фута · 3 = 49,2 фута.

Еще по теме «Как легко выучить таблицу умножения?»:

Таблица умножения

Как выучить таблицу умножения ? Есть ли секреты?) Учим — учим, никак не запомним … Таблица умножения проистекает и основана на сложении. Чем лучше ученик знает и понимает сложение, тем быстрее и легче он освоит умножение.

Поделитесь, как вы учили таблицу умножения

Раздел: Школа (Заучивание таблицы умножения ). Поделитесь, как вы учили таблицу умножения. Не можем выучить и всё тут! Таблица умножения — с помощью игр : плакаты и карточки с числами и примерами. А летнее заучивание нужно только для того, чтобы в нужный…

Таблица умножения. Как проще выучить?

Выучили таблицу умножения — что дальше? Все мы когда-то учили таблицу умножения в начальных Таблицу умножения задавали учить на лето после 1-го класса. реально начала проходить ее Таблица умножения : как выучить ? Самый легкий способ: домик умножения.

Таблица умножения

Посоветуйте, пожалуйста, как быстро выучить таблицу умножения. Ребенок только что вспомнил, что за лето надо было выучить да, были тут на эту тему посты Мой личный совет — начните учить с «на 9», потом легче все идет именно на 9 легко выучить если понять что…

Про таблицу умножения

Как я учила мою девочку таблице умножения. Над кроватью ребенка я повесила плакат с таблицей умножения. У нас с ним уговор — что перед мой сейчас учит в школе. наизусть учат только на 2, 3, 5 и 10. а все остальное считают из выученного. например: 6*8= 5 *8+8 или 7*8=7…

таблица умножения

я не учу ребенка запоминать таблицу умножения. запомнить достаточно только основные «опорные точки»- умножение на 2, 3 и 5. все остальное, особенно «сложные случаи» легко в уме вычисляются. например 7×9- это 7×10-7. 7х6- это 7х 5 +7. как-то так…

Таблица умножения

Чтобы легко воссоздать в голове незнаемое комбинацией из предыдущих знаний, например, сложением, перестановкой мест множителей и т.п. Таблица умножения, правила русского языка: как запомнить ? 4 способа. Поиграем в математику: как выучить таблицу умножения.

Таблица умножения

Поиграем в математику: как выучить таблицу умножения. Двусторонние карточки с таблицей умножения для запоминания. Задали нашим выучить таблицу умножения на лето между 1 и 2 классом .Я думала, что прямо и начнутся задания по…

дети и таблица умножения.

У нас таблица умножения выучена и сдана еще до НГ,поэтому конечно отскакивает.Но у нас они учили ее и параллельно активно применяли в решениях(согласно Она просекла смысл умножения, а после этого сообразила, что проще выучить, чем пять раз по девять прибавлять.

Как вы учили таблицу умножения?

Когда подходит время учить таблицу умножения, многие родители задаются вопросом: как это сделать быстро, легко и желательно в игре ? Хочу поделиться с вами последовательностью шагов, которые помогут ребенку выучить таблицу умножения, а также примерами игр — они…

таблица умножения.

Кто сейчас ее учит таблицу умножения. У нас на носу второй класс, С трудом мы бьем ее, на два выучили отлично, на три — средненько, на четыре туго, на пять — никак. Вообщем беда. не хочет учить и труба. какой стимул поставить, а?

Таблица умножения

Таблица умножения. На лето задали учить таблицу умнножения. Таблица умножения нужна помощь!!! Подскажите как правильно и быстро научить ребенка таблице умножения, а тоя поняла, что делаю это неверно и совсем ребенка запутала.

Таблица умножения.

Никак не идет таблица умножения 🙁 Поделитесь секретами, кто как учил ? Про пальцы я знаю, по сколько раз взять им объяснили. Только вот он делает тридцать пятый раз задание трижды пять и складывает тройки 🙁 Неужели трудно наизусть запомнить?

Таблица умножения

🙂 Делюсь секретом » таблицы умножения на 9 на пальцах». Руки перед собой, левая около правой У нас таблица умножения и другие математические таблицы висят в … туалете. Таблица умножения — когда у вас по программе? Таблицу умножения задавали учить на…

Таблица умножения

Задали на лето выучить таблицу умножения .Подскажите как заинтересовать ребенка.Может кто-нибудь знает какие-нибудь ссылки в Интернете.Поделитесь опытом Очень интересно учат таблицу умножения в «Золушке» в Одинцово. Поют результат на известные детские мелодии.

Основные понятия

Во всем мире принято использовать эти десять цифр для записи чисел: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. С их помощью создается любое натуральное число.


Название числа напрямую зависит от количества знаков.

  • Однозначное — состоит из одного знака
  • Двузначное — из двух
  • Трехзначное — из трех и так далее.

Разряд — это позиция, на которой стоит цифра в записи. Их принято отсчитываются с конца.

Разряд единиц — то, чем заканчивается любое число. Разряд десятков — то, что находится перед разрядом единиц. Разряд сотен стоит перед разрядом десятков. На место отсутствующего разряда всегда можно поставить ноль.

В числе 429 содержится 0 тысяч, 4 сотни, 2 десятка и 9 единиц.

Умножение — арифметическое действие в котором участвуют два аргумента. Один множимый, второй множитель. Результат их умножения называется произведением.

Свойства умножения

1. От перестановки множителей местами произведение не меняется.

a * b = b * a

2. Результат произведения трёх и более множителей не изменится, если любую группу заменить произведением.

a * b * c = (a * b) * c = a * (b * c)

Самое главное в процессе вычисления — это знание таблицы умножения. Это сделает подсчет упорядоченным и быстрым.

Важно помнить правило: умножение в столбик с нулями дает в результате ноль

а * 0 = 0, где а — любое натуральное число.

Алгоритм умножения в столбик

Как умножать в столбик — рассмотрим умножение в столбик по шагам:

1. Запишем пример в строку. Выберем и подчеркнем из двух чисел наименьшее, чтобы не забыть при новой записи поставить его вниз.

2. Записываем произведение в виде столбика. Сначала наибольший множитель, затем наименьший, тот что мы подчеркнули ранее. Слева ставим соответствующий знак и проводим черту под которой будем записывать ход решения

Важно обратить внимание разряды, чтобы единицы стояли стоять под единицами, десятки под десятками и т. д

3. Поэтапно производим необходимые действия. Каждую цифру первого множителя нужно умножить на крайнюю цифру второго. Это действие происходит справа налево: единицы, десятки, сотни.

Если результат получится двузначным, под чертой записывается только последняя его цифра. Остальное переносим в следующий разряд путем сложения со значением, полученным при следующем умножении.

4. После умножения на единицу второго множителя с остальными цифрами необходимо провести аналогичные манипуляции. Результаты записывать под чертой, сдвигаясь влево на одну позицию.

Умножение на однозначное число

Для решения задачи по произведению двух натуральных чисел, одно из которых однозначное, а другое — многозначное, нужно использовать способ столбика. Для вычисления воспользуемся последовательностью шагов, которую рассмотрели выше. 

Возьмем пример 234 * 2:

1. Запишем первый множитель, а под ним второй. Соответствующие разряды расположены друг под другом. Двойка находится под четверкой.

2. Последовательно умножаем каждое число в первом множителе на второй, начиная с единиц и продвигаясь к десяткам и сотням.

3. Ответ запишем под чертой:

Производить действия необходимо в следующей последовательности:

Умножение двух многозначных чисел


Если оба множителя — многозначные натуральные числа, нужно действовать следующим образом.

Рассмотрим пример 207 * 8063:

  1. Сначала запишем наибольшее 8063, затем наименьшее 207. Нужно разместить цифры друг под другом справа налево:
  1. Последовательно перемножаем значения разрядов. Результатом является неполное произведение.
  1. Далее перемножаем десятки. Первый множитель умножим на значение разряда десятков второго и т.д. Результат запишем под чертой.
  1. По аналогии действуем с сотыми. Ноль пропускаем в соответствии с правилом. Так получилось второе неполное произведение:
  1. Далее складываем два произведения в столбик. 
  1. Получившееся семизначное число — результат умножения исходных натуральных чисел.

Ответ: 8 063 * 207 = 1669041. 

Примеры на умножение в столбик

Самостоятельное решение задачек помогает быстрее запомнить правила и натренировать скорость

Неважно, в каком классе учится ребенок — в 1, 3 или 4 — эти примеры подойдут всем

Чтобы запомнить все правила, повторите метод сложения столбиком, так как один из этапов умножения состоит из сложения промежуточных результатов. А еще лучше — приходите заниматься увлекательной математикой в детскую школу Skysmart.

Вместо скучных параграфов ученики решают интерактивные задачки и головоломки с мгновенной автоматической проверкой, а еще чертят фигуры на онлайн-доске вместе с преподавателем.

Определение слова «Умножение» по БСЭ:

Умножение — операция образования по двум данным объектам а и b, называемым сомножителями, третьего объекта с, называемого произведением. У. обозначается знаком Х (ввёл англ. математик У. Оутред в 1631) или · (ввёл нем. учёный Г. Лейбниц в 1698). в буквенном обозначении эти знаки опускаются и вместо аЧ b или а · b пишут ab. У. имеет различный конкретный смысл и соответственно различные конкретные определения в зависимости от конкретного вида сомножителей и произведения. У. целых положительных чисел есть, по определению, действие, относящее числам а и b третье число c, равное сумме b слагаемых, каждое из которых равно а, так что ab = а + а +… + а (b слагаемых). Число а называется множимым, b — множителем. У. дробных чисел m &frasl. n и p &frasl. q определяется равенством m &frasl. n · p &frasl. q = m·p &frasl. n·q (см. Дробь). У. рациональных чисел даёт число, абсолютная величина которого равна произведению абсолютных величин сомножителей, имеющее знак плюс (+), если оба сомножителя одинакового знака, и знак минус (-), если они разного знака. У. иррациональных чисел определяется при помощи У. их рациональных приближений.У. комплексных чисел, заданных в форме &alpha. = а + bi и &beta. = с + di, определяется равенством &alpha.&beta. = ac — bd + (ad + bc) i. При У. комплексных чисел, записанных в тригонометрической форме:&alpha. = r1 (cos&phi.1 + isin &phi.1),&beta. = r2 (cos&phi.2 + isin &phi.2),их модули перемножаются, а аргументы складываются:&alpha.&beta. = r1r2{cos (&phi.1 + &phi.2) + i sin ((&phi.1 + &phi.2)}.У. чисел однозначно и обладает следующими свойствами:1) ab = ba (коммутативность, переместительный закон).2) a (bc) = (ab) c (ассоциативность, сочетательный закон).3) a (b + c) = ab + ac (дистрибутивность, распределительный закон). При этом всегда а ·0 = 0. a·1 = а. Указанные свойства лежат в основе обычной техники У. многозначных чисел.Дальнейшее обобщение понятия У. связано с возможностью рассматривать числа как операторы в совокупности векторов на плоскости. Например, комплексному числу r (cos&phi. + i sin &phi.) соответствует оператор растяжения всех векторов в r раз и поворота их на угол&phi. вокруг начала координат. При этом У. комплексных чисел отвечает У. соответствующих операторов, т. е. результатом У. будет оператор, получающийся последовательным применением двух данных операторов. Такое определение У. операторов переносится и на другие виды операторов, которые уже нельзя выразить при помощи чисел (например, линейные преобразования). Это приводит к операциям У. матриц, кватернионов, рассматриваемых как операторы поворота и растяжения в трёхмерном пространстве, ядер интегральных операторов и т.д. При таких обобщениях могут оказаться невыполненными некоторые из перечисленных выше свойств У., чаще всего — свойство коммутативности (некоммутативная алгебра). Изучение общих свойств операции У. входит в задачи общей алгебры, в частности теории групп и колец.

Формы записи и терминология

Умножение записывается с использованием знака умножения (∙, ×, ∗) между аргументами, такая форма записи называется инфиксной нотацией. В данном контексте знак умножения является бинарным оператором. Знак умножения не имеет специального названия, тогда как, например, знак сложения называется «плюс».

Самый старый из используемых символов — диагональный крестик (×). Впервые его использовал английский математик Уильям Отред в своём труде «Clavis Mathematicae» 1631 г. Немецкий математик Лейбниц предпочитал знак в виде приподнятой точки (∙). Этот символ он использовал в письме 1698 года. Йоханн Ран ввёл звёздочку (∗) в качестве знака умножения, она появилась в его книге «Teutsche Algebra» 1659 г.

В российских учебниках математики в основном используется знак в виде приподнятой точки (∙). Звёздочка (∗) используется, как правило, в текстах компьютерных программ.

Результат записывается с использованием знака равенства «={\displaystyle =}», например:

a⋅b=c{\displaystyle a\cdot b=c}
6⋅3=18{\displaystyle 6\cdot 3=18} («шесть умножить на три равно восемнадцать» или «шестью три — восемнадцать»).

Часто в математических выражениях знак умножения опускается (не записывается), если это не вызывает неоднозначного прочтения. Например вместо y=6⋅x+3⋅z{\displaystyle y=6\cdot x+3\cdot z} пишется y=6x+3z{\displaystyle y=6x+3z}. Как правило, знак умножения опускают, если одним из сомножителей является однобуквенная переменная, функция или выражение в скобках: b2−4ac{\displaystyle b^{2}-4ac}, nsin⁡x{\displaystyle n\sin x}, a(b+c){\displaystyle a(b+c)}.

Традиционно при записи произведения нескольких сомножителей числа записывают перед переменными, а переменные перед функциями. Так, выражение n⋅sin⁡x⋅5⋅m{\displaystyle n\cdot \sin x\cdot 5\cdot m} будет записано как 5nmsin⁡x{\displaystyle 5nm\sin x}.

Что такое степень числа

Алгебра дает нам такое определение: 

«Степенью n числа а является произведение множителей величиной а n-раз подряд»

an — степень, где

a — основание степени

n — показатель степени

Соответственно, an= a·a·a·a…·a

Читается такое выражение, как a в степени n

Если говорить проще то, степень, а точнее показатель степени (n), говорит нам о том, сколько раз следует умножить это число (основание степени) на само себя.

А значит, если у нас есть задачка, где спрашивают, как возвести число в степень, например, число — она решается довольно просто:

23 = 2·2·2, где

2 — основание степени

3 — показатель степени

Действия, конечно, можно выполнять и на калькуляторе — вот несколько подходящих:

  • Раз
  • Два
  • Три

Вы здесь

Таблица умножения и деления

Файлы: 

Вложение Размер
Таблица умножения и деления, картинка с пояснением 74.46 КБ
Таблица умножения и деления 105.44 КБ
Таблица умножения и деления без ответов 19.53 КБ

Чтобы скачать и рапсечатать таблицу умножения и деления, используйте ссылки выше или нажмите правую кнопку мышки над картинками ниже и выберите «сохранить картинку как».


Таблица умножения и деления без ответов.

Тип:

материал

  • Все тесты. Проверка. Тренажер таблицы умножения.
    • Умножение на 1. Все тесты.
      • Умножение на 1 (ввести ответ
      • Умножение на 1 (двусторонние карточки
      • Умножение на 1 (двусторонние карточки
      • Умножение на 1 (карточки
      • Умножение на 1 (карточки
      • Умножение на 1 (найти ответ
      • Умножение на 1 (найти ответ
    • Умножение на 2. Все тесты.
      • Умножение на 2 (ввести ответ
      • Умножение на 2 (ввести ответ
      • Умножение на 2 (двусторонние карточки
      • Умножение на 2 (двусторонние карточки
      • Умножение на 2 (карточки
      • Умножение на 2 (карточки
      • Умножение на 2 (найти ответ
      • Умножение на 2 (найти ответ
    • Умножение на 3. Все тесты.
      • Умножение на 3 (ввести ответ
      • Умножение на 3 (ввести ответ
      • Умножение на 3 (двусторонние карточки
      • Умножение на 3 (двусторонние карточки
      • Умножение на 3 (карточки
      • Умножение на 3 (карточки
      • Умножение на 3 (найти ответ
      • Умножение на 3 (найти ответ
    • Умножение на 4. Все тесты.
      • Умножение на 4 (ввести ответ
      • Умножение на 4 (ввести ответ
      • Умножение на 4 (двусторонние карточки
      • Умножение на 4 (двусторонние карточки
      • Умножение на 4 (карточки
      • Умножение на 4 (карточки
      • Умножение на 4 (найти ответ
      • Умножение на 4 (найти ответ
    • Умножение на 5. Все тесты.
      • Умножение на 5 (ввести ответ
      • Умножение на 5 (ввести ответ
      • Умножение на 5 (двусторонние карточки
      • Умножение на 5 (двусторонние карточки
      • Умножение на 5 (карточки
      • Умножение на 5 (карточки
      • Умножение на 5 (найти ответ
      • Умножение на 5 (найти ответ
    • Умножение на 6. Все тесты.
      • Умножение на 6 (ввести ответ
      • Умножение на 6 (ввести ответ
      • Умножение на 6 (двусторонние карточки
      • Умножение на 6 (двусторонние карточки
      • Умножение на 6 (карточки
      • Умножение на 6 (карточки
      • Умножение на 6 (найти ответ
      • Умножение на 6 (найти ответ
    • Умножение на 7. Все тесты.
      • Умножение на 7 (ввести ответ
      • Умножение на 7 (ввести ответ
      • Умножение на 7 (двусторонние карточки
      • Умножение на 7 (двусторонние карточки
      • Умножение на 7 (карточки
      • Умножение на 7 (карточки
      • Умножение на 7 (найти ответ
      • Умножение на 7 (найти ответ
    • Умножение на 8. Все тесты.
      • Умножение на 8 (ввести ответ
      • Умножение на 8 (ввести ответ
      • Умножение на 8 (двусторонние карточки
      • Умножение на 8 (двусторонние карточки
      • Умножение на 8 (карточки
      • Умножение на 8 (карточки
      • Умножение на 8 (найти ответ
      • Умножение на 8 (найти ответ
    • Умножение на 9. Все тесты.
      • Умножение на 9 (ввести ответ
      • Умножение на 9 (ввести ответ
      • Умножение на 9 (двусторонние карточки
      • Умножение на 9 (двусторонние карточки
      • Умножение на 9 (карточки
      • Умножение на 9 (карточки
      • Умножение на 9 (найти ответ
      • Умножение на 9 (найти ответ
    • Умножение на 10. Все тесты.
      • Умножение на 10 (ввести ответ
      • Умножение на 10 (ввести ответ
      • Умножение на 10 (двусторонние карточки
      • Умножение на 10 (двусторонние карточки
      • Умножение на 10 (карточки
      • Умножение на 10 (карточки
      • Умножение на 10 (найти ответ
      • Умножение на 10 (найти ответ
    • Тест-тренажер онлайн! Таблица умножения
    • Тест-тренажер онлайн! Таблица умножения. 10 вопросов.
  • Умножение
    • Умножение на 1
    • Умножение на 2
    • Умножение на 3
    • Умножение на 4
    • Умножение на 5
    • Умножение на 6
    • Умножение на 7
    • Умножение на 8
    • Умножение на 9
    • Умножение на 10
  • Таблица умножения до 20 и до 100
  • Таблица умножения и деления
  • Умножение в столбик
  • Еще
    • Таблица сложения
    • Линейка
    • Без ответов
    • Таблица кубов
    • Таблица степеней
    • Калькуляторы
      • Умножение
      • Найти неизвестный множитель
      • Деление
      • Сложение
      • Кубов
    • Шпаргалка

Изучение

В своё время введение заучиваемой наизусть таблицы умножения революционизировало устный и письменный счёт. До этого использовались разные хитрые способы вычисления произведений однозначных чисел, которые сильно замедляли весь процесс и служили источником дополнительных ошибок.

В российских школах значения традиционно доходят до 10×10. В Великобритании до 12×12, что связано в том числе с единицами английской системой мер длины (1 фут = 12 дюймов) и денежного обращения (существовавшей до  г.: 1 фунт стерлингов = 20 шиллингам, 1 шиллинг = 12 пенсам).

В Советском Союзе таблицу умножения обычно «задавали на лето» после 1-го класса, а закрепляли на занятиях во 2-м классе (в возрасте 8 лет). В российских школах чаще всего проходят во 2-м классе. По стандартам английского школьного образования таблица умножения должна быть выучена к возрасту 11 лет (планируется ужесточение требования до 9 лет).

Описание работы онлайн тренажера

Данный тренажер работает на основе специально разработанного алгоритма повышения сложности примеров: начиная с самых простых цифр «2 x 2», постепенно повышая сложность до «9 x 9». Тем самым плавно завлекая в процесс изучения.

Таким образом, запоминать таблицу умножения придётся небольшими порциями, что существенно снизит нагрузку, так как дети будут направлять своё внимание всего лишь на несколько примеров, забыв про весь «большой» объём. В Тренажере есть меню настроек для выбора режима изучения таблицы

Имеется возможность выбора дейстия — «Умножение» или «Деление», диапазона примеров «Вся таблица» или «На какое-то число». Все это является рассширенным функционалом сайта и доступно после оплаты

В Тренажере есть меню настроек для выбора режима изучения таблицы. Имеется возможность выбора дейстия — «Умножение» или «Деление», диапазона примеров «Вся таблица» или «На какое-то число». Все это является рассширенным функционалом сайта и доступно после оплаты.

Каждый новый пример сопровождается справочной подсказкой, так ребёнку будет легче начать своё изучение и запоминать новые неизвестные ему комбинации.

Если же по ходу обучения, какой либо пример вызывает трудность, можно быстро напомнить себе его результат, воспользовавшись дополнительной подсказкой, это поможет эффективнее справляться с запоминанием трудных примеров.

Процентная шкала быстро даст вам понять каким уровнем знания таблицы умножения Вы обладаете.

Пример считается полностью выученным, если правильный ответ был дан 4 раза подряд. Однако при достижении 100%, призываем не бросать изучение, а вернуться на следующий день и освежить свои знания, повторно пройдя все примеры. Ведь именно регулярные занятия развивают память и закрепляют навыки!

Описание интерфейса онлайн тренажера

Во-первых, в тренажере присутствует «панель быстрого доступа», включающая в себя 4 кнопки. Они позволяют: перейти на главную страницу сайта, включить или отключить звуковые сигналы, сбросить результаты обучения (начать изучение сначала), а также попать на страницу отзывов и комментариев.

Во-вторых, это основная структура программы.

Выше всех находится процентная шкала, отобржающая примерный уровень знания таблицы умножения.

Ниже идет поле с примером, на который необходимо дать ответ. Во время ответа оно будет изменять свой цвет: станет красным — если был дан неверный ответ, зеленым — в случае правильного, голубым — после использования подсказки, и желтоватым — во время показа нового примера.

Следом располагается строка сообщений. В ней выводятся текстовая информация об ошибках, правильных ответах, а также справочной и дополнительной подсказками.

В конце находится экранная клавиатура, содержащая только необходимые для работы кнопки: все цифры, «забой» — если нужно исправить ответ, кнопки «Проверить» и «Дополнительная подсказка».

Мы уверены, что данный тренажер «Таблица умножения за 20 минут», поможет легко и быстро выучить таблицу умножения и деления.

Изучение от простого к сложному

Учить таблицу умножения лучше начинать от простых чисел, то есть с единицы. Начав учить таблицу на более легкие числа, ребенок не потеряет интереса к обучению. А если начать с чисел 10, 9, то, наоборот, возможна потеря веры в свои силы и дальнейшее обучение пойдет с трудом.

При изучении умножения на числа 1, 2, 3 ребенок в состоянии на практике проверить правильность решений, а начиная изучать с числа 9, практически проверить правильность будет проблематично.

Пользуясь квадратом Пифагора, и выучив таблицу до множителя 6, необходимо для наглядности закрасить в зеленый цвет уже выученные примеры и увидеть, что осталось уже не так уж и много

Перед этим обратить внимание ребенка, что при смене мест множителей результат будет одинаковым, то есть, если 2*9=18, то и 9*2=18

Обязательно при изучении хвалить и поощрять. Не ругать и не наказывать – это только отвернет ребенка от учения таблицы, и потом оно будет ему даваться с большим трудом.


С этим читают