Мышечное волокно

Митохондрии и миофибриллы в мышцах

Рассмотрим строение мышечного волокна. В цитоплазме (саркоплазме) его находится большое количество митохондрий. Они играют роль электростанций, в которых происходит обмен веществ и накапливаются богатые энергией вещества, а также те, которые нужны для обеспечения энергетических потребностей. В составе любой мышечной клетки имеется несколько тысяч митохондрий. Они занимают примерно 30-35 % общей ее массы.


Строение мышечного волокна таково, что цепочка из митохондрий выстраивается вдоль миофибрилл. Это тонкие нити, обеспечивающие сокращение и расслабление наших мышц. Обычно в одной клетке находятся несколько десятков миофибрилл, при этом длина каждой может доходить до нескольких сантиметров. Если сложить массу всех миофибрилл, входящих в состав мышечной клетки, то ее процентное соотношение от общей массы будет около 50 %. Толщина волокна, таким образом, зависит в первую очередь от числа миофибрилл, находящихся в нем, а также от их поперечного строения. В свою очередь, миофибриллы состоят из большого количества крохотных саркомеров.

Поперечно-полосатые волокна свойственны мышечным тканям как женщин, так и мужчин. Однако их строение несколько отличается в зависимости от пола. По результатам биопсии мышечной ткани были сделаны выводы о том, что в мышечных волокнах женщин процент миофибрилл ниже, чем у мужчин. Это относится даже к спортсменкам высокого уровня.

Кстати, сама мышечная масса распределена неодинаково по телу у женщин и мужчин. Подавляющая ее часть у женщин находится в нижней части тела. В верхней же объемы мышц невелики, а сами они мелкие и зачастую вовсе нетренированные.

ГМВ vs ОМВ

Скорее всего, вы уже слышали о том, что волокна, из которых состоят наши мышцы, бывают двух типов: быстрые (ГМВ) и медленные (ОМВ). Если говорить точнее, существует также третий, промежуточный тип – переходные волокна.

Тип волокна определяется количеством нервных импульсов, посылающихся к волокну. Чем импульсов больше – тем, соответственно, выше активность адезинтрифосфатазы, а также выше скорость сокращения волокна.

Адезинтрифосфатаза – это особые ферменты класса гидролаз, ускоряющие процесс отщепления H3PO4 от молекул аденозинтрифосфата, в результате которого происходит высвобождение энергии, используемой для сокращения мышц.

ГМВ (белые)

Итак, почему же они «белые»? Всё дело в содержащихся в них капиллярах, которых значительно меньше, чем в ОМВ, отсюда и различия в цвете. По своей структуре ГМВ, как правило, в несколько раз толще, чем ОМВ. Их реакция на поступающие из мозга сигналы мгновенна, а скорость сокращения как минимум в два раза выше, чем у окислительных. Энергию гликолитические волокна получают за счет быстроусвояемых АТФ, креатинфосфатов и гликогена. Необходимо понимать, что эти энергетические источники иссякают всего за 30-60 секунд. В процессе получения энергии быстрыми волокнами не участвует кислород, благодаря чему энергия высвобождается практически мгновенно, однако ее запасы сильно ограничены. Исходя из этого, можно сделать вывод, что белые мышечные волокна подходят для высокоинтенсивных, но непродолжительных нагрузок. Однако их энергии не достаточно для выполнения многочисленных повторов и долгих, монотонных движений.

ОМВ (красные)

Они являются полной противоположностью гликолитическим по своему строению и функциям, и буквально созданы для легких и продолжительных нагрузок. Они способны накапливать, запасать энергию, а затем постепенно ее расходовать, благодаря митохондриям и миоглобину. Так что, если в ваших мышцах преобладают ОМВ — из вас вполне может получиться бегун на длинные дистанции, вам также подойдет аэробный спорт.

К сожалению, ОМВ имеют гораздо меньший потенциал в росте своих объемов и количества, чем гликолитические. Так что увеличение нашей мышечной массы в основном происходит за счет ГМВ.

Соотношение ОМВ и ГМВ в нашем организме предопределено генетикой и изменить его мы не в силах. У абсолютного большинства из нас преобладают окислительные волокна; у каждого четвертого – наоборот, процентное соотношение гликолитических волокон немного выше, чем красных. И лишь у некоторых спортсменов преобладание одних мышечных волокон над другими доходит до 85% – именно они обладают самыми высокими шансами добиться наибольших результатов в спорте.

Особенности красных волокон

Медленные мышечные волокна имеют множество митохондрий. В них осуществляется процесс окисления, который необходим для получения энергии. Красные волокна окружены большой сетью капилляров. Они нужны для доставки большого объема кислорода вместе с кровью.

Медленные мышечные волокна хорошо приспособлены к осуществлению аэробной системы энергообразования. Сравнительно невелика сила их сокращений. Скорость, с которой они потребляют энергию, является достаточной для того, чтобы обходиться только аэробным метаболизмом. Красные волокна прекрасно подходят для осуществления неинтенсивной и продолжительной работы, такой как ходьба и легкий бег, стайерские дистанции в плавании, аэробика и др.

Сокращение мышечного волокна обеспечивает выполнение движений, которые не требуют больших усилий. Благодаря ему также поддерживается поза. Эти поперечно-полосатые волокна свойственны мышечным тканям, которые включаются в работу при нагрузках, находящихся в пределах от 20 до 25 % от максимума возможной силы. Они характеризуются отличной выносливостью. Однако красные волокна не работают при осуществлении спринтерских дистанций, подъеме тяжелого веса и др., поскольку эти типы нагрузок предполагают довольно быстрый расход и получение энергии. Для этого предназначены белые волокна, о которых мы сейчас и поговорим.

Быстрые окислительно-гликолитические волокна

Второй тип – быстрые окислительно-гликолитические волокна. Их называют также переходными или промежуточными. Данные волокна являются своего рода промежуточным типом между медленными и быстрыми мышечными волокнами. Они характеризуются мощной системой энергообразования (анаэробной), однако приспособлены и к осуществлению довольно интенсивной аэробной нагрузки. Другими словами, эти волокна могут развивать большие усилия и высокую скорость сокращения. При этом основным источником энергии является гликолиз. В то же время, если интенсивность сокращения становится низкой, они способны достаточно эффективно использовать окисление. Этот тип волокон задействуется в работе, если нагрузка составляет от 20 до 40 % от максимума. Однако, когда она составляет около 40 %, организм человека сразу же полностью переходит на использование быстрых гликолитических волокон.

Соотношение медленных и быстрых волокон в организме

В процессе исследований было установлено, что соотношение медленных и быстрых мышечных волокон в организме обусловлено генетически. У среднестатистического человека примерно 40-50% медленных и 50-60% быстрых мышечных волокон. Но каждый человек индивидуален, поэтому именно в Вашем организме могут преобладать, как красные, так и белые волокна.

В разных мышцах тела пропорциональное соотношение белых и красных мышечных волокон не одинаково. Дело в том, что разные мышцы и мышечные группы выполняют в организме различные функции, поэтому они могут достаточно сильно отличатся по составу мышечных волокон. Например, в бицепсе и трицепсе около 70% белых волокон, в бедре 50%, а в икроножной мышце всего 16%. Таким образом, чем более динамичная работа входит в функциональную задачу мышцы, тем больше в ней будет содержаться быстрых волокон.

Мы уже знаем, что общее соотношение в организме белых и красных мышечных волокон заложено генетически. Именно поэтому у разных людей и существует разный потенциал в занятиях силовыми или наоборот выносливыми видами спорта. При преобладании медленных мышечных волокон, гораздо больше подходят такие виды спорта как плавание на длинные дистанции, марафонский бег, лыжи и т.п., то есть те виды спорта, где задействована в основном аэробная система энергообразования. Чем больше в организме доля быстрых мышечных волокон, тем лучших результатов можно достигнуть в спринтерском плавании, беге на короткую дистанцию, бодибилдинге, пауэрлифтинге, тяжелой атлетике, боксе и других видах спорта, где первостепенное значение имеет взрывная энергия, которую могут обеспечить только быстрые мышечные волокна. У выдающихся спортсменов — спринтеров быстрые мышечные волокна всегда преобладают, их количество в мышцах ног доходит до 85%. Для тех, у кого волокон разных типов примерно поровну прекрасно подойдут средние дистанции в плавании и беге. Все вышесказанное не означает, что если у человека преобладают быстрые волокна, то он никогда не сможет пробежать марафонскую дистанцию. Марафон он пробежит, но чемпионом в этом виде спорта точно никогда не станет. И наоборот, результаты в бодибилдинге человека, в организме которого значительно больше красных волокон, будут хуже, чем у среднестатистического, имеющего примерно равное соотношение белых и красных волокон.

Может ли меняться пропорциональное содержание быстрых и медленных волокон в организме в результате тренировок? Здесь данные противоречивы. Одни утверждают, что это соотношение неизменно и никакие тренировки не могут изменить генетически заданной пропорции. Другие данные свидетельствуют о том, что при упорных тренировках часть волокон может поменять свой тип: так силовой тренинг в бодибилдинге может увеличить количество быстрых мышечных клеток, а при аэробных тренировках увеличивается содержание медленных клеток. Однако эти изменения довольно ограничены и переход одного типа в другой не превышает 10%.

Подведем итоги:

Параметры оценки

Тип мышечного волокна

FT-волокна (быстрые)

ST-волокна (медленные)

FTG-волокна

FTO-волокна

скорость сокращения

высокая

высокая

низкая

сила сокращения

очень большая

большая

незначительная

аэробная выносливость

плохая

хорошая

очень хорошая

реакционная способность.

быстрая

быстрая

медленная

диаметр волокна

большой


средний

малый

способность к гипертрофии

небольшая

небольшая

большая

способ получения энергии

гликолиз

гликолиз и окисление

окисление

продолжительность работы

низкая

средняя

высокая

содержание митохондрий

незначительные

средние

значительные

запасы фосфатов

значительные

средние

незначительные

отложения гликогена

значительные

средние-среднезначительные

среднее

жировые запасы

незначительные

незначительные-средние

средние-среднезначительные

капилляризация

незначительная

от хорошей до очень хорошей

очень хорошая

выполняемые функции

анаэробная работа: нагрузки в субмаксимальной зоне, проявление максимальной и скоростной силы

продолжительная анаэробная нагрузка средней интенсивности, довольно интенсивная аэробная нагрузка

аэробная работа, выносливость и силовая выносливость, статическая работа на опору и удержание

Красные волокна

Эти волокна также называют медленными. Сокращаются они медленно, но обладают при этом хорошей выносливостью, эти качества незаменимы, например, в марафонском беге. Красные волокна включаются в работу, когда предстоит выполнить большой объем, а времени в запасе много, когда предстоит монотонный труд, длительные, но небольшие нагрузки. В их состав входит большое количество мелких кровеносных сосудов – капилляров и красного пигментного белка – миоглобина, что и придает волокнам красный цвет.

Вместе с циркулирующей по капиллярам кровью к мышцам поступает кислород, который транспортируется миоглобином внутрь тканей уже непосредственно к энергетическим станциям − митохондриям. Внутри митохондрий происходит длительная химическая реакция по окислению триглицеридов (жиров), в ее процессе выделяется необходимая мышцам энергия. Такая реакция может происходить только с участием кислорода. Для продолжительной и качественной работы мышц, в том числе для их тренировки, этого вещества в организме должно быть достаточно.

Хорошее обеспечение мышечных тканей кислородом обычно происходит при небольшой нагрузке, с интенсивностью, не превышающей 25% от максимально для вас возможной, делать упражнения нужно в медленном темпе. При этом максимальной считается нагрузка, при которой вам будет под силу сделать упражнение не более двух раз подряд. В клетках красных волокон есть пигментное вещество — миоглобин, задача которого накопить запасы кислорода для поддержания реакции. Если кислорода по капиллярам будет поступать недостаточно, начнет подключаться миоглобин, отдавая свои накопленные запасы.

Поставщиком триглицеридов для реакции служит внутренний, а также подкожный жир. В связи с этим, красные волокна всегда содержат больше жиров, чем белые.

Фиксация

Концы мышечных волокон прочно фиксируются в сухожилий или сухожильных прослоек, размещаемых между ними. Сарколеммой образует пальцеобразные вырасти, между которыми находятся коллагеновые волокна соединительной ткани, которые крепят мышечные волокна до костей. Эта связь настолько прочен, что при нагрузке, которое способно разорвать мышцы или сухожилия, структура остается целой.


Тонкие слои рыхлой соединительной ткани между мышечными волокнами называют эндомизий, ретикулярные и коллагеновые волокна его переплетаются с волокнами сарколеммы (внешний соединительно-тканевый слой). В эндомизием локализуются гемокапилляры и структуры нервной ткани.

Комплекс волокна с окильний элементами является структурной и функциональной единицей скелетной мышцы. Мышечные волокна объединяются в пучки, между которыми есть толстые слои рыхлой соединительной ткани, которая носит название перимизий.

Соединительную ткань, покрывающая мышцу в целом, как орган, называют епимизий.

Схожести

И красные волокна, и белые относятся к мышечным тканям и входят в состав одних и тех же мышц. Оба типа волокон – это инструменты для достижения определенных целей. Переключения между медленными и быстрыми механизмами происходят автоматически, по необходимости и совсем незаметно для нас.

Для успешной работы, и красных, и белых волокон необходимо достаточное количество энергии, без ее пополнения мышцы работать не будут. В обоих случаях синтез энергии происходит в митохондриях, которые находятся внутри мышечных клеток. В состав одной такой клетки может входить несколько тысяч митохондрий. Эти синтезаторы энергии выстраиваются в цепочки вдоль тонких нитей – миофибрилл, которые обеспечивают процессы сокращения мышц.

Условия для роста мышц

Итак, что нужно, чтобы росли мышцы?

  • ТРЕНИРОВОЧНЫЙ СТРЕСС (разрушение)! Он нужен для того, чтобы способствовать выработке АНАБОЛИЧЕСКИХ ГОРМОНОВ! Только тогда тело включит процесс роста (анаболизма).
  • ГОРМОНАЛЬНЫЙ ФОН! Нам нужны ГОРМОНЫ, которые копируют информацию о синтезе белка из ДНК клетки. Именно благодаря им метаболизм (обмен веществ) сдвигается в сторону роста (анаболизма). Разрушение белковых структур на тренировке заставляет организм восстанавливать разрушения. Это залечивание, как раз, и называется СИНТЕЗ БЕЛКА.
  • ИОНЫ ВОДОРОДА! О них мы сегодня уже достаточно много говорили. Они РАСКРУЧИВАЮТ СПИРАЛЬ ДНК для того, чтобы информация о синтезе белка стала доступна для считывания гормонами (стероидно-рецепторными комплексами). Если не будет достаточного количества ионов водорода, которые выделяются в ответ на расход АТФ, то у гормонов не будет возможности считать информацию о синтезе белка и запустить рост. ЗАПОМНИТЕ: ГОРМОНЫ (стероиды) без тренировочного стресса НЕ ДАДУТ РЕЗУЛЬТАТА, а ТРЕНИРОВКА БЕЗ ГОРМОНОВ ДАСТ!
  • КРЕАТИНФОСФАТ! Даёт энергию молекуле ДНК для ей быстрой работы. Так же добавка КРЕАТИН МОНОГИДРАТ может способствовать выполнению дополнительных пары повторений на тренировке. Хорошая вещь.
  • АМИНОКИСЛОТЫ для роста! Для того, чтобы вырастить мышцы, нужно чтобы было из чего растить! Аминокислоты – это пластический строительный материал для роста мышц.

Да белок (аминокислоты) очень важен! Но больше в условиях ДИЕТЫ (дефицита простых углеводов). Представьте, когда вы худеете, т.е. не едите углеводы и тренируетесь, то гликогена в ваших мышцах ОЧЕНЬ МАЛО, а значит приходится использовать в качестве энергии аминокислоты (дорогой источник питания). Если вы будете дополнительно пить на тренировке и после аминокислоты, то вы сохраните больше мышц.

Это не выгодно производителям спортивного питания, т.к. БЕЛОК ДОРОЖЕ и с его продажи можно получить БОЛЬШЕ! Но я считаю, что это так. УГЛЕВОДЫ ВАЖНЕЕ, чем белок, особенно в условиях набора мышечной массы, т.к. дают энергию вашим мышцам.

Дело в том, что после тренировки ваше тело ДАЖЕ НЕ ДУМАЕТ о том, чтобы растить мышцы, т.к. оно истощило запасы энергии! Ему надо их восполнить! Именно поэтому следующие два дня после тренировки ваше тело восполняет запасы энергии и даже не думает о росте. А сократительные белки продолжают разрушаться за счёт ферментов – ПРОТЕИНКИНАЗ! Только спустя 2 дня тело запускает восстановление и, как обычно пишут, восстанавливается за 7 дней. Но на самом деле, даже больше. Обычно за 10-14 дней.

Это касается ЛЮБЫХ мышечных волокон (ММВ, БМВ, ВБМВ). Единственная разница в том, что для ММВ сложнее удержать нужную концентрацию ионов водорода, поэтому необходимо выполнять упражнения определённым образом, о чём мы говорили выше в этой статье.

Библиография[править | править код]

Baldwin К. М. (2000). Research in the exercise sciences: Where do we go from here? Journal of Applied Physiology 88, 332-336.

Bodine S.C., Latres Е., Naumhueter S., Lai V. К.-М., Nunez L., Clarke В. A., Pouey-mirou W.T., Panaro F.J., Na E., Dharmara-jan K., Pan Z.-Q., Valenzuela D. М., DeChi-ara Т. М., Stitt T. N., Yancopoulos G. D., Glass D. J. (2001). Identification of ubiqui-tin ligases required for skeletal muscle athro-phy. Science 294, 1704-1707.

Bouchard С., Shephards R.J., Stephen Т. (1994). Physical Activity, Fitness, and Health. International Proceedings and Consensus Statement. Champaign, IL: Human Kinetics Publishers. 1055 pp.

Brooks G. A., Fahey Т. D., White Т. Р. (1996). Exercise Physiology: Human Bioenergetics and its Applications. Mountain View, CA: Mayfield Publishing Company. 750 pp.

Fritzsche R.G., Switzer T.W., Hodgkinson B.J., Coyle E. F. (1999). Stroke volume decline during prolonged exercise is influenced by the increase in heart rate. Journal of Applied Physiology 86, 799-805. [В этой работе исследуется, связано ли снижение ударного объема сердца во время длительной физической нагрузки с увеличением частоты сердечных сокращений и/или увеличением кровотока в коже.]

Labeit S., Kolmerer В. (1995). Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 13270 (5234), 293-296.

Pekkarinen Н. (1998). Finnish Fitness Plan Program, <http://ffp.uku.fi>

Saltin В., Radegran G., Koskolou M. D., and Roach R.C. (1998). Skeletal muscle blood flow in humans and its regulation during exercise. Acta Physiologica Scandinavica 162, 421-436.

Saltin В., Rowell L. В. (1980). Functional adaptations to physical activity and inactivity. Federation Proceedings 39, 1506-1513.

Sen С. К., Packer L., Ндпшпеп О. (2000). Handbook of oxidants and antioxidants in exercise. Amsterdam: Elsevier. 1207 pp.

Tamaki Т. Akatsuka A., Takunaga М., Ishige К., Uchiyama S., Shiraishi Т. (1997). Morphological and biochemical evidence of muscle hyperplasia following weight-lifting exercise in rats. American Journal of Physiology 21Ъ (Cell Physiology 42), C246-C256. .

Vander A. J., Sherman J. Н., Luciano D. S. (1990). Human Physiology: the Mechanisms of Body Function. New York: McGraw-Hill Publishing Company, 724 pp. .

Wilmore J. Н., Costill D. С. (1999). Physiology of Sport and Exercise. Champaign, IL: Human Kinetics Publishers. 710 pp.

Быстрые мышечные волокна (белые)

Данный тип еще называют «белые мышечные волокна». Они выполняют функцию высокоскоростных движений и способны к быстрому, так скажем взрывному сокращению мышц. Это является большим плюсом, но также и минусом, потому как быстрые волокна имеют свойство быстро утомляться. Именно этот тип преобладает у бодибилдеров и достаточно хорошо развит. Еще, данный тип волокон способен на повышенную гипертрофию. Грипертрофия – это способность увеличивать объем и массу органы или клеток, под влиянием всевозможных факторов. Существует, так называемая истинная и ложная гипертрофия. Ложная, означает увеличение в объемах и массе какого либо органа за счет увеличения жировой прослойки (жировой ткани).

А в основе “истиной гипертрофии” лежит, как вы уже догадались, естественный прирост массы, за счет увеличения нагрузок на тот или иной орган, ее еще называют рабочей гипертрофией. Именно она развита у людей, которые занимаются силовыми видами спорта. Углубляться в понятие гипертрофии мы не будем, принцип вы поняли. Идем дальше!

Из выше перечисленного следует, что у тех людей, у которых быстрых волокон больше, те способны на более интенсивный прирост мышечной массы. Такие люди без условно сильны, и подымают огромные тяжести, но выносливость у многих очень мала

Конечно же, если атлет не делает упражнения и не акцентирует внимание на тренировках для повышения выносливости, в таком случае,  силовая выносливость будет на уровне. В бодибилдинге, таких людей, с преобладанием белых волокон прозвали генетическими монстрами

Они способны на колоссальный прирост мышечной массы.

Быстрые волокна, также подразделяются на два типа: переходные и быстрые. Краткая характеристика:

Переходные(промежуточные) мышечные волокна: используются для продолжительной анаэробной нагрузки. Этот тип является чем то средним между быстрыми и медленными, и может использовать как аэробный так и анаэробный метаболизм для продукции энергии. Источником энергии для них является креатинфосфат, а также гликоген.

Быстрые мышечные волокна: скорость сокращения у этого подвида очень высокая, отличается большой способностью к гипертрофие и высокой скоростью утомления. Используются в силовом тренинге. Также как и переходные, быстрые волокна питаются энергией с креатинфосфата и гликогена. И именно этот тип волокна имеет большую ценность для бодибилдера, по этому, почти все тренировки рассчитаны на данный тип мышечных волокон.

Программа тренировок для быстрых мышечных волокон.

Быстрые и медленные мышечные волокна

Для того, чтобы понять, как работает наш организм, необходимо объяснить вам что существуют быстрые и медленные мышечные волокна. Весь наш мышечный каркас состоит из различных групп мышц, среди которых медленные и быстрые волокна. Они называются так в силу своей интенсивности роста.

Так, медленные мышечные волокна очень сложно увеличить в размерах, некоторые утверждают, что практически невозможно. Эти мышцы не могут выдерживать очень больших весов, но они могут выдержать долгую и продолжительную нагрузку. Такие волокна отвечают за динамическую работу мышц, удерживают наше тело в тонусе в течение всего дня и производят необходимое человеку тепло. Эти мышечные волокна дают нашим мышцам выносливость. Если у человека преобладают медленные мышечные волокна, то он редко добивается больших результатов в бодибилдинге.

Быстрые мышечные волокна – напротив, обладают большой силой, но не такой хорошей выносливостью, как медленные. Они утомляются быстрее. Количество повторений при работе быстрых мышечных волокон значительно меньшее, но вес, с которым совершается упражнение, может быть предельным. То есть максимальным весом, на который способен человек.

У каждого человека природой заложено равное соотношение быстрых и медленных мышечных волокон. Но это не всегда так. У кого-то преобладают быстрые, у кого-то медленные мышечные волокна. Определить свое соотношение можно при помощи специальной техники:

Определите свой предельный вес на каждую мышечную группу, будь то руки, грудь, ноги и т.п. Для этого:

Разогрейте мышцы перед подъемом предельного веса (поднятием небольших весов на данную группу мышц) Возьмите вес, с которым вы можете сделать от 2-х до 5-ти повторений. Отдохните 3 минуты. Возьмите вес, с которым вы сможете сделать только 1 повторение

Внимание!!! Обязательно попросите кого-нибудь вас подстраховать во-избежание травмы. Запишите предельный вес, для каждой группы мышц. Отдохните 15 минут. Возьмите вес в 80% от предельного для каждого упражнения Выполните максимальное количество повторений с этим весом Запишите результат.. Результаты теста:

Результаты теста:

  • Если вы выполнили до 8-ми повторений, то преобладают быстрые мышечные волокна (для данной группы мышц)
  • Если вы выполнили до 10 повторений, то соотношение быстрых и медленных мышечных волокон одинаково (для данной группы мышц)
  • Если вы выполнили до 12 повторений и более, то преобладают медленные мышечные волокна (для данной группы мышц)

Строение мышцы

Каждая скелетная мышца состоит из множества тонких мышечных волокон, толщиной 0,05-0,11 мм и длиной до 15 см. Мышечные волокна собраны в пучки по 10-50 штук, окруженные соединительной тканью. Сама мышца тоже окружена соединительной тканью (фасцией). Мышечные волокна составляют 85-90% массы мышцы, остальную часть составляют кровеносные сосуды и нервы, проходящие между ними. Мышечные волокна плавно переходят на концах в сухожилия, а сухожилия крепятся к костям.

В саркоплазме (цитоплазме) мышечных волокон содержится множество митохондрий, которые выполняют роль электростанций, где проходят процессы обмена веществ и скапливаются вещества богатые энергией, а также другие вещества, необходимые для обеспечения энергетические потребностей. Каждая мышечная клетка имеет тысячи митохондрий, которые составляют 30-35% ее массы. Митохондрии выстраиваются цепочкой вдоль миофибрилл, тонких мышечных нитей, благодаря которым и происходит сокращение-расслабление мышц. Одна клетка содержит обычно несколько десятков миофибрилл. Длина миофибриллы может достигать нескольких сантиметров, а масса всех миофибрилл мышечной клетки составляет около 50% ее общей массы. Таким образом, толщина мышечного волокна главным образом будет зависеть от количества находящихся в нем миофибрилл и от поперечного сечения миофибрилл. Миофибриллы в свою очередь состоят из множества крохотных саркомеров.

Целенаправленные занятия физкультурой и спортом приводят к:

  • увеличению количества миофибрилл в мышечном волокне;
  • увеличению поперечного сечения миофибрилл;
  • увеличению размеров и количества митохондрий, снабжающих миофибриллы энергией;
  • увеличиваются запасов энергоносителей в мышечной клетке (гликогена, фосфатов и т.д.).

В процессе занятий сначала увеличивается сила мышцы, в последствии увеличивается толщина мышечного волокна, что в конечном итоге приводит к общему увеличению поперечного сечения всей мышцы. Процесс увеличения толщины мышечных волокон называется гипертрофия, а уменьшения — атрофия.

Сила и мышечная масса увеличиваются не пропорционально: если мышечная масса увеличивается, например, вдвое, то мышечная сила при этом увеличится втрое.

Биопсии мышечной ткани показали более низкий процент миофибрилл в мышечных волокнах женщин, чем у мужчин (даже у спортсменок высокой квалификации). Вкупе со значительно более низким уровнем тестостерона (тестостерон заставляет «выжимать» из мужского организма максимум), традиционная у мужчин тренировка на увеличение мышечной массы с большими весами в малом числе повторений оказывается малоэффективной для большинства женщин. Поэтому женщины и не могут нарастить огромные мышцы, как бы не старались. Количество мышечных волокон в конкретной мышце задано генетически и в процессе тренировок не изменяется. Поэтому человек с бОльшим количеством мышечных волокон в конкретной мышце имеет бОльший потенциал для развития этой мышцы, нежели другой человек, имеющий меньшее количество мышечных клеток в этой мышце.

Быстро сокращающиеся мышечные волокна ( II-тип)

1. Быстро сокращающиеся волокна делятся на 2 группы:

  •  быстро сокращающиеся IIa — быстрые оксидативные (используют кислород, чтобы преобразовать гликоген в АТФ);
  •  быстро сокращающиеся IIb — быстрые гликолитические (используют АТФ, который хранится в мышечных клетках в виде гликогена, чтобы вырабатывать энергию).

2. Быстро сокращающиеся волокна имеют высокий порог активации, поэтому включаются в работу только тогда, когда потребность в силе будет больше, чем могут обеспечить медленно сокращающиеся волокна.

3. Быстрым волокнам требуется меньше времени, чтобы достичь пиковой силы. К том же они могут генерировать больше силы, чем медленные волокна.

4. Хотя они генерируют больше силы, но и быстрее устают.

5. Мышцы, отвечающие за создание движения, в большей степени состоят из быстрых волокон.

6. Тренировка для силы и прочности увеличивает количество быстро сокращающихся мышечных волокон, задействованных в конкретном движении.

7. Быстро сокращающиеся волокна отвечают за размер и выразительность мышц.

8. Быстрый тип волокон называется «белыми волокнами», так как плохо снабжается кровью и не имеет такого насыщенного цвета, как второй тип.

Как видно из вышеперечисленного, характеристики быстро сокращающихся волокон требуют тренировок на силу и прочность, а также на развитие взрывной силы. Если вы хотите по максимуму использовать быстрые волокна в своих тренировках для повышения силы и прочности, вот несколько конкретных методов, которые в этом помогут.

Методы тренировки для быстро сокращающихся волокон:

— Тренировки с тяжелым весом заставляют мышцы активировать больше мышечных волокон. Чем тяжелее вес, тем больше быстро сокращающихся волокон будет вовлечено в работу.

— Выполнение взрывных движений, а также упражнений на прочность с использованием штанги, гирь или гантель, обеспечит работу большего количества мышечных волокон.


— Быстро сокращающиеся волокна быстро устают. Поэтому надо сосредоточиться на использовании тяжелого веса, но только до определенного числа повторений (например, от двух до шести), чтобы достигнуть максимального эффекта.

— Поскольку быстрые волокна быстро истощают энергию, во время тренировок требуются более длительные периоды отдыха, чтобы мышцы-двигатели имели достаточно времени восстановиться и пополнить запасы АТФ. Поэтому после каждого взрывного или силового упражнения стоит делать паузы продолжительностью в 60-90 секунд.

Генетика определяет количество каждого из типов мышечных волокон в нашем теле. Тем не менее, понимание того, какой именно, быстро- или медленно сокращающийся, тип является доминирующим, поможет выстроить правильную программу тренировок. Поэтому, если обнаружите, что, как правило, придерживаетесь тренировок на выносливость, и они относительно легко вам поддаются, вы, вероятно, являетесь обладателем большого количества медленно сокращающихся волокон. И наоборот, если предпочитаете физическую нагрузку, которая предусматривает короткие взрывные движения или тренировки с большим весом, — в вашем теле доминирует быстро сокращающийся тип волокон. 

Программа упражнений, которая применяет правильные стратегии тренировок для ваших мышечных волокон, поможет максимизировать эффективность нагрузок.опубликовано econet.ru

Таблица характеристик типов мышечных волокон

Характеристики

Медленно сокращающиеся

Быстро сокращающиеся IIa

Быстро сокращающиеся IIb

Генерирование силы

Низкий уровень

Средний уровень

Высокий уровень

Скорость сокращения

Низкий уровень

Высокий уровень

Высокий уровень

Уставаемость

Низкий уровень

Средний уровень

Высокий уровень

Гликолитическая способность

Низкий уровень

Высокий уровень

Высокий уровень

Оксидативная способность

Высокий уровень

Средний уровень

Низкий уровень

Снабжаемость кровью

Высокий уровень

Средний уровень

Низкий уровень

Митохондриальная плотность

Высокий уровень

Средний уровень

Низкий уровень

Выносливость

Высокий уровень

Средний уровень

Низкий уровень

Присоединяйтесь к нам в  , , Одноклассниках

Типы волокон и гипертрофия скелетных мышц[править | править код]

Мощность, развиваемая мышцей, зависит от ее размера и состава мышечных волокон. Скелетные мышечные волокон делятся на две основные категории: медленно сокращающиеся (тип 1) и быстро сокращающиеся волокна (тип II). Разница между этими двумя волокнами заключается в метаболизме, скорости сокращения, нервно-мышечных различиях, запасах гликогена, капиллярной плотности, и реакцией на гипертрофию .

Волокна типа Iправить | править код

Тип I волокна, также известные как медленные физические мышечные волокна, отвечают за поддержание позы тела и костей скелета. является примером преимущественно медленных мышечных волокон. Увеличение плотности капиллярной сети характерно для I типа волокон, потому что они более активно участвуют в деятельности, требующей выносливости. Эти волокна способны сокращаться на длительное время. Волокнам данного типа требуется меньший уровень возбуждения, чтобы вызвать сокращение, но они и развивают меньшую мощность. Они лучше используют жиры и углеводы из-за повышенного окислительного метаболизма (комплексной системы обеспечения организма энергией, которая преобразует энергию от распада веществ при содействии кислорода).

Волокна типа I как было показано, значительно гипертрофируются вследствие прогрессивной перегрузки . Интересно отметить, что это увеличение волокон типа I вызывается не только силовыми тренировками, но и в некоторой степени аэробными упражнениями.

Тип волокна IIправить | править код

Тип волокон II можно найти в мышцах, производящих большую силу на более короткие промежутки времени, таких как икроножная и . Волокна II типа могут быть дополнительно разделены по классификации на тип IIa и тип IIb мышечных волокон.

Тип волокон IIa

Тип IIa, также известный как быстрые гликолитические мышечные волокна, это гибридный вариант между типом I и IIb волокон. Тип IIa обладают характеристиками типов I и IIb волокон. Они полагаются на анаэробные реакции (производящие энергию без участия кислорода), и окислительный метаболизм, чтобы поддерживать сокращение.

Путем упражнений с отягощениями, а также тренировок на выносливость, тип IIb превращается в тип IIa волокон, что приводит к увеличению доли типа волокон IIa в мышце. Волокна типа IIa также увеличивают площадь поперечного сечения, что приводит к гипертрофии при силовых нагрузках. При неиспользовании и атрофии, волокна типа IIa превращаются обратно в тип IIb.

Волокна типа IIb

Тип IIb это быстрые гликолитические волокна. Данные волокна полагаются только на анаэробный метаболизм для получения энергии для сокращения, поэтому они имеют большое количество гликолитических ферментов. Эти волокна генерируют наибольшее количество силы за счет увеличенных размеров тел нейронов, аксонов и мышечных волокон, более высокой скорости проводимости нервов альфа-двигателя, а более высоком количестве возбуждения, необходимого для запуска потенциала действия. Хотя этот тип волокна способен генерировать наибольшее количество силы, он также сокращается на самое короткое время (среди всех типов мышечных волокон).

Волокна типа IIb превращаются в тип IIa во время упражнений с отягощениями. Считается, что силовые тренировки вызывает увеличение окислительной способности в тренированных мышцах. так как волокна IIa имеют больший окислительный потенциал, чем типа IIb, это изменение является положительной адаптацией к условиям тренировки.


С этим читают