Как освоить устный счёт школьникам и взрослым

Содержание

Секреты устного счёта

Существуют приемы устного счета — простые алгоритмы, которые желательно довести до автоматизма. После овладения простыми приёмами можно переходить к освоению более сложных.


Прибавляем числа 7,8,9

Для упрощения вычислений числа 7,8,9 сначала надо округлять до 10, а затем вычитать прибавку. К примеру, чтобы прибавить 9 к двузначному числу, надо сначала прибавить 10, а затем вычесть 1 и т.д.

Примеры:

56+7=56+10-3=63

47+8=47+10-2=55

73+9=73+10-1=82

Быстро складываем двузначные числа

Если последняя цифра двузначного числа больше пяти, округляем его в сторону увеличения. Выполняем сложение, из полученной суммы отнимаем «добавку».

Примеры:

54+39=54+40-1=93

26+38=26+40-2=64

Если последняя цифра двузначного числа меньше пяти, то складываем по разрядам: сначала прибавляем десятки, затем — единицы.

Пример:

57+32=57+30+2=89

Если слагаемые поменять местами, то сначала можно округлить число 57 до 60, а потом вычесть из общей суммы 3:

32+57=32+60-3=89

Складываем в уме трехзначные числа

Быстрый счет и сложение трехзначных чисел — это возможно? Да. Для этого надо разобрать трехзначные числа на сотни, десятки, единицы и поочередно их приплюсовать.

Пример:

249+533=(200+500)+(40+30)+(9+3)=782

Особенности вычитания: приведение к круглым числам

Вычитаемые округляем до 10, до 100. Если надо вычесть двузначное число, надо округлить его до 100, вычесть, а затем к остатку прибавить поправку. Это актуально если поправка невелика.

Примеры:

67-9=67-10+1=58

576-88=576-100+12=488

Вычитаем в уме трехзначные числа

Если в свое время был хорошо усвоен состав чисел от 1 до 10, то вычитание можно производить по частям и в указанном порядке: сотни, десятки, единицы.

Пример:

843-596=843-500-90-6=343-90-6=253-6=247 

Умножить и разделить

Моментально умножать и делить в уме? Это возможно, но без знания таблицы умножения не обойтись. Таблица умножения — это золотой ключик к быстрому счету в уме! Она применяется и при умножении, и при делении. Вспомним, что в начальных классах деревенской школы в дореволюционной Смоленской губернии (картина «Устный счет») дети знали продолжение таблицы умножения — с 11 до 19!

Хотя на мой взгляд достаточно знать таблицу от 1 до 10, чтобы мочь перемножать бо´льшие числа. Например:

15*16=15*10+(10*6+5*6)=150+60+30=240

Умножаем и делим на 4, 6, 8, 9

Овладев таблицей умножения на 2 и на 3 до автоматизма, сделать остальные расчеты будет проще простого.


Для умножения и деления двух- и трехзначных чисел применяем простые приёмы:

  • умножить на 4 — это дважды умножить на 2;

  • умножить на 6 — это значит умножить на 2, а потом на 3;

  • умножить на 8 — это трижды умножить на 2;

  • умножить на 9 — это дважды умножить на 3.

Например:

37*4=(37*2)*2=74*2=148;

412*6=(412*2)·3=824·3=2472

Аналогично:

  • разделить на 4 — это дважды разделить на 2;

  • разделить на 6 — это сначала разделить на 2, а потом на 3;

  • разделить на 8 — это трижды разделить на 2;

  • разделить на 9 — это дважды разделить на 3.

Например:

412:4=(412:2):2=206:2=103

312:6=(312:2):3=156:3=52

Как умножать и делить на 5

Число 5 — это половина от 10 (10:2). Поэтому сначала умножаем на 10, затем полученное делим пополам.

Пример:

326*5=(326*10):2=3260:2=1630

Еще проще правило деления на 5. Сначала умножаем на 2, а затем полученное делим на 10.

326:5=(326·2):10=652:10=65,2.

Умножение на 9

Чтобы умножить число на 9, необязательно его дважды умножать на 3. Достаточно его умножить на 10 и вычесть из полученного умножаемое число. Сравним, что быстрее:

37*9=(37*3)*3=111*3=333

или

37*9=37*10 — 37=370-37=333

Также давно замечены частные закономерности, которые значительно упрощают умножение двузначных чисел на 11 или на 101. Так, при умножении на 11, двузначное число как бы раздвигается. Составляющие его цифры остаются по краям, а в центре оказывается их сумма. Например: 24*11=264. При умножении на 101, достаточно приписать к двузначному числу такое же. 24*101= 2424. Простота и логичность таких примеров вызывает восхищение. Встречаются такие задачи очень редко — это примеры занимательные, так называемые маленькие хитрости.

Нелёгкая судьба гения

Во время Второй Мировой войны вокруг царил хаос и ужас, Трахтенберга он, к сожалению, тоже не обошёл стороной. Из-за своего происхождения он был насильно доставлен из Берлина прямо в исток адских страданий – концентрационный лагерь. Ежедневно ему приходилось наблюдать за смертями своих соотечественников и издевательствами над ними, неоднократно подвергаясь им, в том числе. Чтобы не обезуметь, он решил полностью погрузиться в таинственный мир математики и чисел.

Найти даже клочок бумаги было непосильной задачей, однако, он искал выход из ситуации всеми возможными путями, насколько сложными они бы ни были. Но большинство информации он хранил не в рукописном варианте, а в своём разуме, что и сейчас позволяет проводить простые манипуляции с числами в уме и записывать лишь конечный результат.


Продумывая множество вариантов, он, в конечном счёте, придумал поистине совершенный метод, который до сих пор часто используют в обиходе при тяжёлых подсчётах.

Некоторые приёмы устного счёта

Для умножения числа на однозначный множитель (например, 34×9) устно, необходимо выполнять действия, начиная со старшего разряда, последовательно складывая результаты (30×9=270, 4×9=36, 270+36=306).

Для эффективного устного счёта полезно знать таблицу умножения до 19×9. В этом случае умножение 147×8 выполняется в уме так: 147×8=140×8+7×8= 1120 + 56= 1176. Однако, не зная таблицу умножения до 19×9, на практике удобнее вычислять все подобные примеры методом приведения множителя к базовому числу: 147×8=(150−3)×8=150×8−3×8=1200−24=1176, причём 150×8=(150×2)×4=300×4=1200.

Если одно из умножаемых раскладывается на однозначные множители, действие удобно выполнять, последовательно перемножая на эти множители, например, 225×6=225×2×3=450×3=1350. Также, проще может оказаться 225×6=(200+25)×6=200×6+25×6=1200+150=1350.

Несколько способов устного счета:

Умножение на 10. Приписать справа нуль: 48×10 = 480.

Умножение на 9. Для того чтобы умножить число на 9 надо к множимому приписать 0 и от получаемого числа отнять множимое, например 45×9=450−45=405.

Умножать на 5 удобнее так: сначала умножить на 10, а потом разделить на 2.

Умножение на 11 двузначного числа . Раздвинуть цифры N и A, вписать посередине сумму (N+A).

например, 43×11 = = = 473.

При умножении на 1,5 умножаемое нужно разделить пополам и прибавить к умножаемому, например 48×1,5= 48/2+48=72. Можно применить при умножении на 15 48×1,5×10 = 720.

Возведение числа вида (оканчивающееся пятёркой) в квадрат производится по схеме: умножаем N на N+1, записываем в сотни, и приписываем 25 справа. Формула:  ×  = .

Доказательство:(10⋅N+5)⋅(10⋅N+5)=102⋅N2+2⋅5⋅10⋅N+52=100⋅N2+100⋅N+25=100⋅N(N+1)+25{\displaystyle (10\cdot N+5)\cdot (10\cdot N+5)=10^{2}\cdot N^{2}+2\cdot 5\cdot 10\cdot N+5^{2}=100\cdot N^{2}+100\cdot N+25=100\cdot N(N+1)+25} Например, 65² = 6×7 и приписываем справа 25, получим 4225 или 95² = 9025 (сотни 9×10 и приписать 25 справа).

Числа, близкие к удобным для умножения числам. можно возводить в квадрат с помощью формулы A2=(A+d)(A−d)+d2{\displaystyle A^{2}=(A+d)(A-d)+d^{2}} (например, 42² = (42 + 2)(42 − 2) + 2² = 44 × 40 + 4 = 1760 + 4 = 1764). Так же можно перемножать числа, находящиеся на одинаковом небольшом расстоянии от удобных, например: 23 × 17 = (20 + 3)(20 − 3) = 20² − 3² = 400 − 9 = 391.

Процесс устного счёта

Процесс устного счёта можно рассматривать как технологию счёта, объединяющую представления и навыки человека о числах, математические алгоритмы арифметики.

Имеются три вида технологии устного счёта, которые используют различные физические возможности человека:

  • счёт «на пальцах»;
  • аудиомоторная технология счёта;
  • визуальная технология счёта.

Характерной особенностью аудиомоторного устного счёта является сопровождение каждого действия и каждого числа словесной фразой типа «дважды два — четыре». Традиционная система счёта является именно аудиомоторной технологией. Недостатками аудиомоторного способа ведения расчётов являются:

отсутствие в запоминаемой фразе взаимосвязей с соседними результатами, невозможность выделить во фразах о таблице умножения отдельно десятки и единицы произведения без повторения всей фразы; невозможность обратить фразу вспять от ответа к множителям, что важно для выполнения деления с остатком; медленная скорость воспроизведения словесной фразы.

Супервычислители, демонстрируя высокие скорости мышления, используют свои визуальные способности и отличную зрительную память. Люди, которые владеют скоростными вычислениями, не используют слов в процессе решения арифметического примера в уме. Они демонстрируют реальность визуальной технологии устного счёта, лишённой главного недостатка — замедленной скорости выполнения элементарных действий с числами.

Частные правила умножения

Умножение на 11

Правило: Добавь цифру к её соседу справа, не забывая про перенос через разряд.

Пример: 3425 × 11 = 37675

3425 × 11 = (0+3)(3+4)(4+2)(2+5)(5+0) = 37675

Умножение на 12

Правило: Добавь удвоенную цифру к её соседу справа, не забывая про перенос через разряд.

Пример: 2413 × 12 = 28956

2413 × 12 = (0×2+2)(2×2+4)(4×2+1)(1×2+3)(3×2+0) = 28956

Умножение на 13

Правило: Добавь утроенную цифру к её соседу справа, не забывая про перенос через разряд.

Пример: 5876 × 13 = 76388

5876 × 13 = (0×3+5)(5×3+8)(8×3+7)(7×3+6)(6×3+0) = 76388

Умножение на 14

Правило: Добавь учетверённую цифру к её соседу справа, не забывая про перенос через разряд.

Пример: 4859 × 14 = 68026

4859 × 14 = (0×4+4)(4×4+8)(8×4+5)(5×4+9)(9×4+0) = 68026

Умножение на 17

Правило: Добавь цифру, умноженную на разряд единиц, к её соседу справа, не забывая про перенос через разряд.

Пример: 5739 × 17 = 97563

5739 × 17 = (0×7+5)(5×7+7)(7×7+3)(3×7+9)(9×7+0) = 97563

____________________________________________________ 

EXAMPLE:                    

49179×13=639327

    4      21      28      10      30      27     

(0x3+4)(4×3+9)(9×3+1)(1×3+7)(7×3+9)(9×3+0)   

   4|

   2|1|

     2|8| 

      1|0|

        3|0| 

          2|7

6-3-9-3-2-7===639327

____________________________________________________

Приемы устного счета

  1. Мгновенное умножение на 11Умножать в уме любые двузначные числа на 11 очень легко, если знаешь секрет. Представь следующий пример: 63 х 11. Для его решения нужно просто сложить цифры, из которых состоит первое число (6 + 3 = 9), а затем поместить девятку между шестеркой и тройкой. Вот и наше решение: 693.

    Если сумма цифр двухзначная, то алгоритм немного меняется. Допустим, пример такой: 86 х 11. Несмотря на то, что 8 + 6 = 14, ответ не 8146! Как и прежде, цифра 4 ставится между цифрами 8 и 6, но 1 добавляется к цифре 8 для получения правильного ответа 946.

    Один хороший учитель сказал: «Если ребенок не понимает, казалось бы, простейших математических понятий, то это не значит, что он глуп. Просто мы еще не придумали для него достаточно понятное объяснение!» Выучить правила умножения без особых затруднений ребенку поможет таблица Пифагора. Никакой лишней информации. Только цифры и логическое мышление.

  2. Умножение чисел, состоящих из единиц, на самих себя Возьми эту таблицу на вооружение, с ней решать такие примеры станет проще простого.

  3. Простой способ умножения на 9 Чтобы умножить любое число от 1 до 9 на 9, посмотри на руки. Загни палец, который соответствует умножаемому числу (например 9×6 — загни шестой палец), посчитай пальцы до загнутого пальца, это будут десятки (в случае 9х6 их 5), затем посчитай пальцы после загнутого, это будут единицы (в нашем случае их 4). Ответ 54.

    Чтобы лучше запомнить таблицу умножения на 9, пригодится эта забавная закономерность. Как ты заметил, цифры в первой колонке каждый раз увеличиваются, а во второй уменьшаются на 1.

    Согласись, что математика — это очень интересный предмет, и своего рода игра, головоломка. А освоить ее лучше помогут увлекательные книги, которые мы предлагаем вниманию наших читателей.

  4. Умножение трехзначных чисел на однозначные Всё, что нужно сделать, это разбить большую задачу на несколько маленьких. Например: 340 х 7. Разбиваем 340 на сумму 300 и 40. Умножаем 300 на 7 и 40 на 7 по отдельности, а получившиеся числа складываем: 2100 + 280 = 2380.
  5. Возведение в квадрат двухзначных чисел Если число, которое нужно возвести в квадрат, находится близко к числу, квадрат которого легко узнать, то можно воспользоваться следующей методикой: к квадрату числа на единицу меньше прибавь само число и число на единицу меньше. Например: 31^2 = 30^2 + 31 + 30 = 961.
  6. Возведение в квадрат чисел, оканчивающихся на 5 Этот прием поможет быстро возвести в квадрат двузначное число, которое заканчивается на 5. Нужно лишь умножить первую цифру числа на число, которое на единицу больше, и приписать в конец числа 25.

    Например: 85 в квадрате (85 х 85). Шаг 1. Умножаем первую цифру на первую цифру, увеличенную на единицу: 8 x (8 + 1) = 72. Шаг 2. Дописываем к 25: получается 7225.

  7. Деление на 5 Делить большие числа на 5 очень просто. Нужно лишь умножить число на 2 и перенести запятую. Например: 235 / 5. Умножаем 235 на 2 (235 х 2 = 470). Переносим запятую на один знак влево: 47,0 или просто 47.
  8. Сложное умножение Хочешь узнать, как умножать большие числа в уме? Если одно из них — четное, ты можешь просто перегруппировать числа, чтобы легче было получить ответ: 32 х 125 = 16 х 250 = 8 х 500 = 4 х 1000 = 4000.
  9. Способ простого нахождения процента от любого числа Чтобы найти простой процент от числа (например 40 % от 600), раздели оба числа на 10 и перемножь результаты между собой (4 х 60 = 240).
  10. Магия числа 1 089 Возьми любое трехзначное число, цифры которого идут в порядке уменьшения (к примеру, 932 или 876). Теперь запиши его в обратном порядке и вычти из исходного числа. К полученному ответу добавь результат вычитания, записанный в обратном порядке.

    Возьмем число 932: 932 — 239 = 693. К результату прибавляем его запись в обратном порядке и получаем магическое число 1089: 693 + 396 = 1089.

    Или число 876: 876 — 678 = 198. К результату прибавляем его запись в обратном порядке и получаем всё то же число 1089: 198 + 891 = 1089.

Величайший итальянский физик, философ и астроном Галилео Галилей как-то сказал: «Математика — это язык, на котором написана книга природы». Надеемся, что благодаря нашим примерам учеба для твоего ребенка станет интересным и увлекательным занятием!

Частные правила умножения

Умножение на 11

Правило: Добавь цифру к её соседу справа, не забывая про перенос через разряд.

Пример: 3425 × 11 = 37675

3425 × 11 = (0+3)(3+4)(4+2)(2+5)(5+0) = 37675

Умножение на 12

Правило: Добавь удвоенную цифру к её соседу справа, не забывая про перенос через разряд.

Пример: 2413 × 12 = 28956

2413 × 12 = (0×2+2)(2×2+4)(4×2+1)(1×2+3)(3×2+0) = 28956

Умножение на 13

Правило: Добавь утроенную цифру к её соседу справа, не забывая про перенос через разряд.

Пример: 5876 × 13 = 76388

5876 × 13 = (0×3+5)(5×3+8)(8×3+7)(7×3+6)(6×3+0) = 76388

Умножение на 14

Правило: Добавь учетверённую цифру к её соседу справа, не забывая про перенос через разряд.

Пример: 4859 × 14 = 68026

4859 × 14 = (0×4+4)(4×4+8)(8×4+5)(5×4+9)(9×4+0) = 68026

Умножение на 17

Правило: Добавь цифру, умноженную на разряд единиц, к её соседу справа, не забывая про перенос через разряд.

Пример: 5739 × 17 = 97563

5739 × 17 = (0×7+5)(5×7+7)(7×7+3)(3×7+9)(9×7+0) = 97563

____________________________________________________ 

EXAMPLE:                    

49179×13=639327

    4      21      28      10      30      27     

(0x3+4)(4×3+9)(9×3+1)(1×3+7)(7×3+9)(9×3+0)   

   4|

   2|1|

     2|8| 

      1|0|

        3|0| 

          2|7

6-3-9-3-2-7===639327

____________________________________________________

Быстрый счет без калькулятора

Жизнь любого современного человека неотрывно связана с числами. Без умения считать невозможно выполнять самые простые повседневные задачи. Конечно, сегодня у людей появились умные помощники – калькуляторы, смартфоны, компьютеры, но даже они могут иногда подвести – сломаться или не вовремя разрядиться. Да и не всегда можно полагаться на гаджеты, ведь на экзаменах в школе или в ВУЗе они не помогут. Именно поэтому многие люди стремятся научиться хорошо считать без помощи подручных средств. Особенно это актуально для школьников, ведь если с детства освоить техники быстрого устного счета, то и учеба в школе, и различные задачи во взрослой жизни будут даваться легче.

Есть еще одна серьезная причина для того, чтобы начать тренироваться хорошо считать в уме. Устный счет развивает человеческий мозг и способствует росту уровня интеллекта. Поэтому даже те студенты, которые обучаются на гуманитарных специальностях, все равно изучают такие точные науки, как высшая математика и математический анализ. Упражнения, направленные на устный счет больших чисел, являются отличной зарядкой для ума. Так развитие интеллекта и удобство в быту – это две самые главные причины научиться хорошо считать без калькулятора.

Человечество еще с древности стремилось найти такие способы быстрого счета. И речь не только о простых вычислениях, таких как сложение и вычитание, но и о более сложных – об умножении и делении. Пусть это и занимает много времени, но складывать и вычитать большие значения все же можно без предварительной подготовки, а вот такие действия, как умножение двузначных чисел, недоступны большинству людей.

Но, благодаря труду математиков со всего земного шара, сегодня появились некоторые математические хитрости, позволяющие считать в уме не только однозначные, но и двузначные числа. Чтобы понять принцип их работы, лучше рассмотреть каждый из этих приемов отдельно.

Как выбрать эффективную методику

Сегодня многие учебные заведения предлагают пройти курсы ментальной арифметики. Но детское образование – это очень сложный и многогранный процесс, поэтому родители должны походить к нему внимательно, и выбирать такие занятия, которые точно принесут пользу.

Выбирая школу ментальной арифметики, обращайте внимание на то, чтобы обучение велось по проверенной методике и учитывало возрастные особенности каждого ребенка. Нельзя, чтобы в одной группе обучались дети из начальной школы и старшеклассники, ведь в каждом возрасте своя скорость освоения, запоминания и закрепления материала

К тому же, маленьким детям лучше всего преподавать любой предмет в игровой форме. Так они не будут уставать учиться и смогут сохранять концентрацию в течение всего урока. Внедрение игры в образовательный процесс способствует повышению интереса ребенка к математике.

Очень важно, чтобы тренер успевал уделить внимание каждому ученику в процессе занятия, но это возможно только в небольших группах. Поэтому стоит отдавать предпочтение тем детским центрам, где педагог обучает не более десяти детей единовременно. Только тогда удастся заниматься с максимальной продуктивностью

Только тогда удастся заниматься с максимальной продуктивностью.

Если учебный план организован правильно, то ребенку удастся приобрести полезные навыки, благодаря которым математика станет для него интересным и любимым предметом. Все это положительно скажется на успеваемости в школе, ведь, когда учеба дается легко, заниматься намного веселее.

Все это делает обучение ментальной арифметике самым продуктивным способом освоения быстрого устного счета.Ребенку больше не придется прибегать к различным математическим хитростям, чтобы легко справляться с задачами и примерами. Ученик приобретает навыки, которые сохраняются на всю жизнь, а значит они пригодятся ему не только в учебе, но и в карьерной деятельности. Все это делает обучение данной технике отличным вкладом в будущее своего ребенка.

Удача наступает на пятки

Но как же в дальнейшем сложилась судьба такого талантливого человека?

Выждав подходящий момент, он смог совершить побег и выбраться из этого жерла вулкана отчаяния. Но он понимал, что стоит ему только попасться на глаза офицерам, и его ждёт та же участь. Так и произошло, однако в этот раз госпожа удача не обошла его стороной, офицер, который его поймал, оказалось, был знаком с деятельностью Якова. Избежать попадания в концлагерь ему не удалось, но он был доставлен в трудовой лагерь, который находился в Триесте. Да, работу на каменоломне лёгкой не назовёшь, но здесь охранники относились к узникам более снисходительно.

Трахтенберга не покидала мысль о побеге, и во второй раз он прошёл успешно. Он пришёл в себя уже в швейцарском лагере для беженцев. Оказавшись на свободе, он открыл институт математики, где и обучал своей методе детей.


Мир узнал об этой невероятной математической системе, благодаря счастливой случайности, по которой журналистка из США встретилась с гением. Она была в восторге, когда увидела, что даже ребёнок может производить сложнейшие расчёты, используя метод Трахтенберга.

Способы и примеры умножения по методике Трахтенберга

Она была знакома с одним из талантливейших профессоров математики Рудольфом МакШэйном, вместе с которым в дальнейшем Яков издал учебник-книгу для старшеклассников и студентов «Быстрая система элементарной математики Трахтенберга». Выше кратко изложена система быстрого счета по Трахтенбергу.

В ходе дальнейших исследований он определил, что его система помогает улучшать память без лишних усилий и укреплять разум. А сейчас его изобретение используют даже в банках и больших компаниях, это явный показатель того, что её оценили по достоинству.

Феноменальные счётчики

Основная статья: Феноменальный счётчик

Феномен особых способностей в устном счёте встречается с давних пор. Как известно, ими обладали многие учёные, в частности, Андре Ампер и Карл Гаусс. Однако, умение быстро считать было присуще и многим людям, чья профессия была далека от математики и науки в целом.

До второй половины XX века на эстраде были популярны выступления специалистов в устном счёте. Иногда они устраивали показательные соревнования между собой, проводившиеся в том числе и в стенах уважаемых учебных заведений, включая, например, Московский государственный университет имени М. В. Ломоносова.

Среди известных российских «супер счётчиков»:

  • Арон Чиквашвили — «чудо-счётчик»
  • Арраго
  • Давид Гольдштейн
  • Игорь Шелушков
  • Горный (Яшков) Юрий Гаврилович
  • А. В. Некрасов — «человек-компьютер»
  • Владимир Кутюков — «человек-календарь»

Среди зарубежных:

  • Борислав Гаджански
  • Вильям Клайн
  • Жак Иноди (итал.)русск.
  • Луи Флери
  • Мадемуазель Осака
  • Морис Дагбер
  • Томас Фулер
  • Урания Диамонди
  • Шакунтала Деви
  • Юсниер Виера — кубино-американский математик, феноменальный счётчик, мировой рекордсмен в области устного календарного исчисления.

Хотя некоторые специалисты уверяли, что дело во врождённых способностях, другие аргументированно доказывали обратное: «дело не только и не столько в каких-то исключительных, „феноменальных“ способностях, а в знании некоторых математических законов, позволяющих быстро производить вычисления» и охотно раскрывали эти законы.

Истина, как обычно, оказалась на некоей «золотой середине» сочетания природных способностей и грамотного, трудолюбивого их пробуждения, взращивания и использования. Те, кто, следуя Трофиму Лысенко, уповают исключительно на волю и напористость, со всеми уже хорошо известными способами и приёмами устного счёта обычно при всех стараниях не поднимаются выше очень и очень средних достижений. Более того, настойчивые попытки «хорошенько нагрузить» мозг такими занятиями, как устный счёт, шахматы вслепую и т. п. легко могут привести к перенапряжению и заметному падению умственной работоспособности, памяти и самочувствия (а в наиболее тяжёлых случаях — и к шизофрении). С другой стороны, и одарённые люди при беспорядочном использовании своих талантов в такой области, как устный счёт, быстро «перегорают» и перестают быть в состоянии длительно и устойчиво показывать яркие достижения.

Как научить ребенка считать в уме

Ментальная арифметика – это далеко не новая система быстрого счета, ведь она зародилась еще в древности, около пяти тысяч лет назад. С тех пор данная методика не претерпела серьезных изменений и дошла до нас в практически первозданном виде. В ее основе лежат вычисления на абакусе – специальных счётах. Сначала человек учится решать простейшие примеры на них, а затем постепенно переходит к более сложному этапу обучения – учится представлять абакус в уме и производить вычисления на нем в своем воображении.

Лучше всего ментальная арифметика подходит именно детям. Нет, взрослые также могут ее освоить, но для этого им придется абстрагироваться от привычных методов операций с числами, а ребенок справляется с этим намного легче. Для него ментальная арифметика является не только помощником на уроках математики, но и способом развить свои интеллектуальные способности до очень высокого уровня.

Весь секрет этой методики в том, что она подразумевает разностороннее развитие человека. За логику и анализ отвечает правое полушарие мозга, именно оно задействуется на обычных уроках математики, когда мы решаем примеры или задачи. Правое полушарие, отвечающее за креативное мышление и фантазию, в этом случае к работе почти не подключается, а значит и не развивается должным образом. А ведь все области человеческого интеллекта необходимо тренировать.

Так как ментальная арифметика задействует и аналитическое мышление, и воображение, она является даже не столько способом быстро решать математические задачи, сколько средством для всестороннего развития. Другие методики чаще всего направлены на тренировку какой-то одной способности, а данная техника работает комплексно. Именно это выделяет ее среди прочих и делает одной из самых популярных систем развития интеллекта ребенка.

Обучение ментальной арифметике занимает достаточно много времени, но те преимущества, которые она дает, оправдывают затраченные усилия

Когда речь идет об обучении ребенка по данной методике, важно подобрать правильную программу тренировок. Ключевым фактором успеха является соблюдение плана занятий и контроль их регулярности

Несмотря на то, что в открытых источниках в интернете можно найти много информации по этому запросу, не всегда удается самостоятельно освоить ментальную арифметику. Поэтому большинство родителей предпочитают обучать ребенка этой технике в детских центрах дополнительного образования.

Простейшие способы устного счета

Быстрее овладеют этим навыком люди, обладающие определенными способностями, а именно: способностью к логическому мышлению, умением сконцентрироваться и сохранять в краткосрочной памяти несколько образов одновременно.

Не менее важно знание специальных алгоритмов действийи некоторых математических законов, позволяющих считать быстро, а также умение выбрать наиболее эффективный для данной ситуации. Ну и, конечно же, не обойтись без регулярных тренировок!

Ну и, конечно же, не обойтись без регулярных тренировок!

В числе самых распространенных приемов быстрого счета следующие:

1. Умножение двузначного числа на однозначное

Умножить двузначное число на однозначное проще всего, разложив его на две составляющие. Например, 45 — на 40 и 5. Далее каждую составляющую умножаем на нужное число, к примеру на 7, отдельно. Получаем: 40 × 7 = 280; 5 × 7 = 35. Затем получившиеся результаты складываем: 280 + 35 = 315.

2. Умножение трехзначного числа

Умножать в уме трехзначное число также намного проще, если разложить его на составляющие, но представив множимое так, чтобы с ним легче было производить математические действия. Например, нам нужно умножить 137 на 5.

Представляем 137 как 140 − 3. То есть получается, что мы теперь должны умножить на 5 не 137, а 140 − 3. Или (140 − 3) х 5.

Ну а дальше каждую часть умножаем отдельно: 140 × 5 − 3 × 5 = 700 − 15 = 685.

Зная таблицу умножения в пределах 19 х 9, можно сосчитать еще быстрее. Раскладываем число 137 на 130 и 7. Далее умножаем на 5 сначала 130, а затем 7, и результаты складываем. То есть 137 × 5 = 130 × 5 + 7 × 5 = 650 + 35 = 685.

Разложить можно не только множимое, но и множитель. Например, нам нужно умножить 235 на 6. Шесть мы получаем, умножив 2 на 3. Таким образом, 235 сначала множим на 2 и получаем 470, а затем 470 умножаем на 3. Итого 1410.

Это же действие можно произвести иначе, представив 235 как 200 и 35. Получается 235 × 6 = (200 + 35) × 6 = 200 × 6 + 35 × 6 = 1200 + 210 = 1410.

Таким же образом, раскладывая числа на составляющие, можно выполнять сложение, вычитание и деление.

3. Умножение на 10-ть

Как умножать на 10, известно всем: просто приписать к множимому нуль. Например, 15 × 10 = 150. Исходя из этого, не менее просто умножать и на 9. Сначала к множимому припишем 0, то есть умножим его на 10, а затем от получившегося числа отнимем множимое: 150 × 9 = 150 × 10 = 1500 − 150 = 1 350.

5. Умножение на 11-ть

Интересно умножать двузначные числа на 11. Возьмем, к примеру, 18. Мысленно раздвинем 1 и 8, и между ними впишем сумму этих чисел: 1 + 8. У нас получится 1 (1 + 8) 8. Или 198.

6. Умножение на 1,5

При необходимости умножить какое-нибудь число на 1,5 делим его на два и прибавляем получившуюся половинку к целому: 24 × 1,5 = 24 / 2 + 24 = 36.

Это лишь самые простые способы устного счета, с помощью которых мы можем тренировать свой мозг в быту. Например, подсчитывать стоимость покупок, стоя в очереди в кассу. Или же совершать математические действия с цифрами на номерах проезжающих мимо машин. Те же, кто любит «играться» с цифрами и хочет развить свои мыслительные способности, могут обратиться к книгам вышеупомянутых авторов.

Тимошенко Елена, BBF.RUм


С этим читают